Timberland: A Natural Inflation Hedge

As we start to see an emergence out of the current global financial crisis, looking forward becomes an important yet daunting task. With central banks around the world utilizing monetary policy to combat the financial downturn, investors become mindful of potential future inflation. During uncertain financial times, seasoned investors turn to alternative assets as a source of stability and return.

Investments in timberland – the ownership of forestland property and the trees growing on them – have historically generated strong risk-adjusted returns (see Chart 1). Timberland returns are comprised of two components, “income” and “appreciation”. The income return reflects the current cash distributions from operations, and depends primarily on timber prices and harvest levels. The appreciation component refers to the change in asset value. This component of return responds to changes in anticipated future income levels and to changes in how timberland markets capitalize those anticipated future income levels into current asset values.

While timberland’s historically strong returns have included a meaningful cash component, timberland investments have also proven to be of relative low risk – as measured by volatility and correlation with the returns from other financial assets. And, in contrast to most financial assets, timberland has also been a good hedge against inflation, especially against unanticipated inflation.

The relationship over the past twenty years between U.S. price inflation and the returns for a sample of U.S. assets commonly found in a diversified portfolio is shown in Chart 2. Timberland has proven to have the highest positive correlation with inflation, next being private commercial real estate—represented here by the NCREIF Property Index.

(Continued on page 2)
Following unprecedented events in financial markets over the recent past and the monetary policy responses as a reaction around the globe, a wide variation exists among investors on the expectations for price inflation going forward. One would agree though, all else equal, that investors prefer a portfolio with returns that are insensitive to departures from inflation expectations, what ever their expectations may be. As prudent investors hedge to insure against unexpected outcomes, we found it meaningful to measure the inflation-hedging properties of timberland along with a group of other assets. To do this, we examined the relationship between asset returns and expected inflation through 2008. We used an approach developed by Washburn and Binkley in 1993 where a basic two-factor model relating timberland returns to overall market returns and unanticipated inflation was employed.

The first calculation measures unanticipated inflation, computed here as the difference between realized U.S. consumer price inflation and a measure of expected inflation generated from regression analysis of short-term U.S. Treasuries. A combination of these results with the real rate of return realized for a given asset over time results in a model we can use to examine the relationship between asset returns and expected inflation (See Note below).

If the model parameter γ_2 is positive, than the asset has historically hedged higher-than-expected inflation. If an asset has historically hedged lower-than-expected inflation – a result prior empirical work found was the case for most financial assets – the parameter γ_2 is negative. Assets which are insensitive to departures from inflation expectations produce a γ_2 parameter of zero. The table below presents these results.

Timberland has been a strong hedge against unexpected inflation, with timberland in the U.S. Pacific Northwest performing particularly well in this regard ($\gamma_2 = +2.62$). Financial asset returns, on the other hand, have responded poorly to unanticipated inflation, all parameters proved negative. This implies that investors can, to some degree, immunize a mixed-asset portfolio against inflation surprises by investing in timberland. Such a portfolio can be formed by combining assets that hedge higher-than-expected inflation with those that hedge lower-than-expected inflation, structuring a portfolio whose value is insensitive to unanticipated inflation.

Table 1: Timberland - Statistical Inflation Correlation Analysis 1978 - 2008

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>γ_0</td>
<td>0.0032</td>
<td>0.0033</td>
<td>0.0033</td>
<td>0.0017</td>
<td>-0.0005</td>
<td>-0.0033</td>
<td>-0.0043</td>
<td>-0.0050</td>
<td>0.0009</td>
</tr>
<tr>
<td>γ_1</td>
<td>0.0934</td>
<td>0.09332</td>
<td>0.030483</td>
<td>0.009895</td>
<td>0.002237</td>
<td>0.009823</td>
<td>0.019885</td>
<td>0.014425</td>
<td>0.024888</td>
</tr>
<tr>
<td>γ_2</td>
<td>-0.0667</td>
<td>-0.0929</td>
<td>-0.0502</td>
<td>-0.0004</td>
<td>-0.0146</td>
<td>-0.0088</td>
<td>-0.0268</td>
<td>0.0836</td>
<td>1.1368</td>
</tr>
<tr>
<td>DW</td>
<td>2.31</td>
<td>2.173</td>
<td>2.383</td>
<td>2.16</td>
<td>1357</td>
<td>3.258</td>
<td>3.337</td>
<td>3.232</td>
<td>2.595</td>
</tr>
<tr>
<td>R^2</td>
<td>0.34</td>
<td>0.216</td>
<td>0.063</td>
<td>0.17</td>
<td>0.044</td>
<td>0.193</td>
<td>0.178</td>
<td>0.270</td>
<td>0.311</td>
</tr>
</tbody>
</table>

Note: Standard errors of the coefficient estimates are given below coefficient. An asterisk (*) indicates that the coefficient estimate is different from zero at the 0.10 level of statistical confidence.

Literature Cited:

Note:
The relationship between asset returns and unexpected inflation was estimated by the model:

$$R_i = \gamma_0 + \gamma_1 R_{m,t} + \gamma_2 U_{i,t} + \epsilon_i$$

Where:

- R_i = return from asset i in period t.
- $R_{m,t}$ = "market" return in period t (measured here by the S&P 500).
- $U_{i,t}$ = unanticipated inflation in period t.
- ϵ_i = an error term, assumed to be normal, and
- $\gamma_0, \gamma_1, \gamma_2$ = parameters to be estimated for each asset i.

(Continued from page 1)